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Abstract: In Silico predictive ADME/Tox screening of compounds is one of the hottest areas in drug discovery. To provide predictions 
of compound drug-like characteristics early in modern drug-discovery decision making, computational technologies have been widely 
accepted to develop rapid high throughput in silico ADMET analysis. It is widely perceived that the early screening of chemical entities 
can significantly reduce the expensive costs associated with late stage failures of drugs due to poor ADME/Tox properties. Drug toxic ef-
fects are broadly defined to include toxicity, mutagenicity, carcinogenicity, teratogenicity, neurotoxicity and immunotoxicity. Toxicity 
prediction techniques and structure–activity relationships relies on the accurate estimation and representation of physico-chemical and 
toxicological properties. This review highlights some of the freely and commercially available softwares for toxicity predictions. The in-
formation content can be utilized as a guide for the scientists involved in the drug discovery arena.
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1. INTRODUCTION 

 In today’s in silico age, information technology (IT) functions 
are essential in pharmaceutical industry, which is under extreme 
pressure to enhance productivity and cut costs associated with dis-
covery and development of drugs. Toxicoinformatics, an in silico
approach, emerged as an important area in toxicology field, and 
involves prediction of toxicity of chemical molecules in the living 
systems [1]. In silico drug discovery program has achieved a sig-
nificant development for predicting new chemical entities (NCEs), 
by reducing the number of experimental trials required for pharma-
ceutical screening and selection. The present scenario is such that 
NCEs are abundant, but they need to be scrutinized critically, by 
unraveling various attributes like absorption, distribution, metabo-
lism, elimination and toxicity (ADME/T), before forwarding them 
for Food and Drug Administration (FDA) approval and then to 
market. 

 The discovery of novel drug molecule consists of seven basic 
steps: disease selection, target selection, lead molecule identifica-
tion, lead optimization, preclinical trial testing, clinical trial testing 
and pharmacogenomic optimization strategies. Out of all these 
steps, clinical trials is the most expensive stage [2]. Over 50% of 
drug like molecule failures are due to poor ADME/T profiles, and 
consequently, 20% of the total R&D costs per drug are spent to 
cross this barrier [1, 3]. Only 1 in 10,000 NCEs make it to the mar-
ket. Even after such rigorous filtration with a high attrition rate, the 
toxicity profile of many molecules is not detected and consequently 
drugs need to be withdrawn from the market, presented in Table 1
[4-6]. Such drug failures lead to colossal loss not only in terms of 
time and money, but also patient health and security. Two main 
approaches for toxicity prediction include in vivo and in vitro 
analysis [7,8]. Both these approaches entail the synthesis of com-
pounds before testing, which is not practical when dealing with 
large combinatorial library of molecules. Toxicoinformatics ap-
proach provides alternative tools by dint of which toxicity can be 
predicted, without veritably synthesizing the molecule. Admittedly, 
in silico approach helps us to surmount the immense public pres-
sure to minimize the use of animals in toxicity testing, thereby sup-
porting “Prevention of cruelty to animals act”. It also helps in im-
plementing the three R’s theory of refine, reduce or replace animals 
in laboratory experiments propagated by the animal ethics commit-
tee [9]. However, animal testing is many times found to be slower 
than their non-animal equivalents and at times also is unreliable for  
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toxicity analysis. In addition to providing guidance to synthetic 
chemists, the ultimate goal of toxicoinformatics is to significantly 
reduce animal testing with rapid in silico approaches for hazard 
(toxicity) characterisation and risk assessment [10,11]. Recent trend 
is an integrated in silico with in vitro and in vivo approaches to 
early ADME/T screening, for making effective decisions on NCEs 
selection, which will help support and accelerate drug discovery 
projects.

 An overview of literature/scientific survey showed that differ-
ent international groups/regulatory agencies are involved in toxicity 
prediction, such as European REACH program [12,13], environ-
mental protection and regulatory agencies in USA, Danish, Canada, 
Japan etc. [14]. General and in depth information on toxicoinfor-
matics exist in well known book “Predicting Chemical Toxicity and 
Fate” edited by Cronin and Livingstone, about in silico toxicity 
prediction tools and its applications in pharmaceutical, environ-
mental and metabolic area [14]. The main theme of the present 
mini-review is to give brief update of different softwares, used for 
predicting in silico toxicity of chemicals and products, by giving its 
strengths and weakness, which can be utilized as guidance in the 
initial phase of the toxicological analysis. 

IN SILICO APPROACHES FOR TOXICITY PREDICTION 

 There is a growing need for computational methods which can 
predict toxicological profiles and fate. Two basic approaches used 
in toxicoinformatics include (a) knowledge based systems (KBS) 
and (b) automated rule induction (ARI) systems. They differ fun-
damentally in the way they operate. KBS predict by reasoning on 
the basis of existing human knowledge whereas ARI systems make 
predictions by learning from and discovering patterns in existing 
data [14]. Some of the predictive toxicological endpoints computed 
using KBS and ARI systems include: rodent carcinogenicity, Ames 
mutagenicity, developmental toxicity potential, skin and eye irrita-
tion, acute oral toxicity LD50, acute inhalation toxicity LC50, acute 
toxicity LC50, acute toxicity EC50, maximum tolerated dose 
(MTD), chronic lowest observable adverse effect level (LOAEL), 
skin sensitisation. Predictive toxicologist use these end points, to 
check the toxicity profile of the NCEs or drug like molecules and 
prevent costly failures by identifying risky drugs, before they reach 
human testing. A general outlay showing the importance of these 
techniques for predicting structure-activity relationships (SARs) is 
presented in (Fig. 1).

Automated Rule Induction (ARI) Systems Approach 

 Molecules from a training set of chemicals of known activity 
for a particular biological endpoint are fragmented into all possible 
atom pairs and other associations. Pattern recognition techniques 
are then used, together with other statistical analyses, to compare  
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the frequency of occurrence of specific structural features in sets of 
active and inactive molecules. In this way, the most important fea-
tures determining or modifying activity are identified. After it has 
been trained, the system can then be used to search for the presence 
of biophores and biophobes in novel molecules. Biophores are the 
substructure fragments that are determined to have a positive rela-
tionship with activity whereas biophobes are negatively related to 
activity. Some ARI utilize methods such as quantitative structure–
toxicity relationship (QSTR). The basis for any QSTR is that the 
biological activity of a new or untested chemical can be inferred 
from the molecular structure, or properties, of similar compounds 
whose activities have already been assessed. Such QSTR models 
can be used to represent, explain, and most importantly predict 
property of interest i.e. toxicity. Attempts to quantify relationships 
between chemical structure and acute toxic potency have been part 
of the toxicological literature for more than 100 years. The toxicity 
of molecules is reflected in their structure. It was proposed that the 
biological activity, , is a function, f, of constitution’, C, of a mole-
cule in a certain biological system.  

= f (C) 

 QSTR models exist at the intersection of biology, chemistry, 
and statistics. In relating physico-chemical properties of structure to 
toxicity, the goal is to generalize from specific cases, to develop an 
understanding of what constitutes a ‘class’ of molecules that are 
active, what determines relative activity, and what distinguishes 
active from inactive molecules [14-16]. TOPKAT and LAZAR are 
amongst the best well known software’s [17-19] following ARI 
approach.

Knowledge Based Systems (KBSs) Approach 

 KBS uses structural alerts in molecules, to develop rules de-
vised by experts based on a database of previous information, for 

example, on different endpoints in toxicity. The rules describe toxi-
cophores in molecules of known activity. A toxicophore [20] is a 
feature or group within a chemical structure that is thought to be 
responsible for the toxic properties. These structural features can 
then be identified in novel molecules drawn on the computer screen 
using commercially available chemical drawing packages, such as 
ISISDRAW and CHEMDRAW, or imported as standard mol file 
format. The efficiency of KBS crucially depends on the capability 
of experts to devise rules which depends on the availability of good 
quality toxicity data. KBS include softwares like DEREK, Haz-
ardExpert and OncoLogic [21-23] for predicting chemical toxicity 
and fate. 

Inverse Docking Approach

 It is based on ligand (or drug)-protein inverse docking strategy 
such that a (query) molecule is attempted to dock to ligand binding 
pockets of proteins associated with potential toxicity and side ef-
fect. A molecule is considered toxic if it docks well into the protein 
site. The term “inverse” is used because the method is used for 
finding proteins that will fit with a specific ligand, rather than find-
ing ligands that fit with a specific protein. INVDOCK algorithm 
follows this approach and its main applications are (i) Prediction of 
drug targets related to side effect and toxicity (drug safety evalua-
tion). (ii) Identification of unknown and secondary therapeutic tar-
gets of drugs, drug leads, drug candidates, natural products, etc. (iii) 
Prediction of targets related to drug ADME (pharmacokinetics
analysis). (iv) Identification of unknown receptors of a ligand 
(pathway analysis) [24, 25].

IN SILICO TOXICITY PREDICTION TOOLS 

(I) TOPKAT- Toxicity Prediction by K(C)omputer Assisted 

Technology 

 TOPKAT was initially made by Health Designs and now de-
veloped and marketed by Accelrys [17]. TOPKAT accurately and 
rapidly assesses the toxicity of chemicals solely from their two 
dimensional (2D) molecular structure. It uses a range of robust, 
cross-validated QSTR models for assessing specific toxicological 
endpoints. It is characterized by verified databases, information-rich 
descriptors, highly predictive QSAR-based models and prediction-
validation techniques which permits the user to determine the appli-
cability of the model to the molecules being assessed. Each TOP-
KAT module consists of a specific database for predicting a spe-
cific toxicity endpoint. 

 A toxic response can be rationalized as a function of mainly 
two terms -the ability of the molecule to reach a site, the ability of 
the molecule to chemically interact with the biological system of 

Table 1.  Some of the Drugs Withdrawn from the Market due to Toxicity 

Drug Disease Reason for withdrawal Year of approval Year of withdrawal

Azaribine Psoriasis Stroke 1975 1976 

Nomifensine Antidepressant Hemolytic anemia 1984 1986 

Encainide Irregular heart beat Fatal arrhythmia 1986 1991 

Temafloxacin Antibiotic Kidney failure 1992 1992 

Flosequinan Congestive heart failure Increased deaths 1992 1993 

Mibefradil Hypertension Heart arrhythmia 1997 1998 

Aestimizole Anticholinergic, Antihistaminic Heart arrhythmia 1988 1999 

Rezulin Antidiabetic Hepatitis 1999 2000 

Rofecoxib Pain relief Cardiac toxicity 1999 2004 

Ximelgratan Anticoagulant Hepatotoxicity 2004 2006 

Gatifloxacin Respiratory tract infection Diabetes 1999 2006 

Fig. (1). The application of toxicoinformatics to analyze, model, and pre-
dict toxicological activity based on chemical structure-activity relationships 
(SARs).
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the site. TOPKAT uses descriptors to quantify the properties related 
to the transport of a chemical, e.g. molecular bulk, shape, symme-
try, as well as descriptors that quantify the chemistry like the in-
formation-rich electro topological descriptors (E-state). This E-state 
descriptors quantify the electronic and topological attributes which 
is then used to quantify interaction at the site. TOPKAT prediction 
is generated through several sequential steps. First the chemical 
structure is entered in form of Simplified Molecular Input Line 
Entry System (SMILES) notations in SMILES entry form as shown 
in (Fig. 2) and the relevant module (end point toxicity model) is 
selected. The test structure is then screened against sub-structural 
library for that module to check whether the test molecular structure 
is "covered" in the library, i.e. the query structure is already present 
in the database of submodel.  

 TOPKAT displays a message indicating its presence in data-
base. After this toxicity prediction is formulated as shown, for ex-
ample Ames mutagenicity prediction in (Fig. 3). Continuous meas-
ures such as LD50, LC50, EC50, MTD and LOAEL are reported in 
weight/weight or weight/volume units whereas dichotomous meas-

ures, such as carcinogenicity, developmental toxicity and muta-
genicity results are reported as a probability of 0-1. The user is also 
given literature references to the original sources of information. 
Any model may be applied to any query structure, and TOPKAT 
will provide a numerical answer. The prediction is reliable when the 
query is within the optimum prediction space (OPS) which is a 
unique multivariate descriptor space in which the model is applica-
ble. If a query structure is outside OPS it may not necessitate that 
the TOPKAT assessed value is incorrect; in fact, the value may be 
extremely accurate or correct. TOPKAT has the capability of exam-
ining the contribution of any contiguous structural moiety i.e. a 
specific atom or group of atoms selected. This feature displays a 
colour-coded “toxicity map” of the query structure. Moiety analysis 
module also provides a quantitative estimate of toxic effect of the 
moiety. For example, DEREK mutagenicity model for bisfuranoids 
is well known and its toxicophore is shown in bold face (Fig. 4-

above) [26]. Using Ames mutagenicity model in TOPKAT we have 
performed moiety analysis of bisfuranoid mycotoxin substructure. 
The colour coded toxicity map of this substructure showed positive 

Fig. (2). SMILES entry form in TOPKAT showing structure. 

Fig. (3). Topkat interface after performing Ames mutagenicity model test.
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contribution towards toxicity to be 37.45 and probability of being 
mutagenic 1 (i.e.100%) (Fig. 4). Five membered ring A in this sub-
structure was predicted to contribute towards mutagenicity in both 
DEREK and TOPKAT (Fig. 4-above and below). There is differ-
ence in toxic substructure prediction among these two softwares. 
DEREK predicted toxicophore of this substructure to have three 
rings (two five membered ring and one six membered ring ), shown 
in bold face. But, TOPKAT gave in addition to ring A, the carbonyl 
and two methyl groups of the substructure to be mutagenic (Fig. 4-

below). This analysis alert synthetic chemist for modification to be 
made in the ring A of bisfuranoid mycotoxin substructure, in order 
to eliminate its toxic effects. 

 In its current form TOPKAT does not allow users to implement 
their own models within the system. Moreover the databases used 
are intangible. The output interface comprises three areas showing 
query structure, descriptor contributions and report of the result. 

 TOPKAT provides a means of validating the toxicity assess-
ment through similarity searching. The underlying assumption is 
that if the model performs an accurate assessment for the similar 
molecule from the database, then the model should also perform an 
accurate and valid assessment of the query structure. TOPKAT 
offers some advantages over other commercial softwares such as (i) 
It is highly user friendly and windows based software, (ii) It offers 
variety of toxicity prediction modules, (iii) It is highly time effi-
cient, (iv) It is automated to choose the specific chemical class sub-
model, (v) After running a prediction, TOPKAT informs the user 
whether the prediction is within the OPS or not, reflecting the de-

gree of confidence to be assigned, (vi) Use of batch mode operation 
when dealing with many molecules. 

 Present limitations in TOPKAT are (i) Chemical structure as-
sessments (long-chain aliphatic, polymers and complex ring struc-
tures) are not well covered by certain TOPKAT modules. It is not 
possible to generate TOPKAT predictions for chemical structures 
comprising salts, inorganic or enol-keto forms, or for iodinated 
chemicals. (ii) The assumption that sub-structural features contrib-
ute independently to biological activity, is not always the case. (iii) 
The Fathead Minnow model has no sub-models for hetero aromat-
ics and single benzenes with four or more substituents. (iv) Com-
pounds of the following types: cyclopropenone, cyclobutendione, 
and cyclopententrione will not be assigned a sub-model for the 
following models: Ames mutagenicity, development toxicity poten-
tial, Rat oral LD50, Rat inhalation LC50, Rat maximum tolerated 
dose, Chronic LOAEL, Skin irritancy, Skin sensitization, Ocular 
irritancy, Aerobic biodegradability, and Fathead Minnow LC50. (v) 
The VLogP model does not support similarity searching. As the 
VLogP model has a great number of "descriptors" (or contributors) 
in its model, it is difficult to decide which descriptors to use for 
calculating similarity. (vi) The choice of organic elements, charges, 
hybridization states is limited so is the number of non-hydrogen 
atoms (105), rings (9), characters in SMILES (249), fragments (10) 
in a molecule. (vii) Bonds between separate fragments are not han-
dled, e.g., C1.C1 will not be read as ethane, but as methane with  
an open ring connection (which will fail due to the missing ring 
closure).  

A

Fig. (4). Mutagenicity toxicophore shown in bold face for bisfuranoids (bisfuranoid mycotoxin substructure) in DEREK, (above) [26] and Ames mutagenicity 

toxicity map for bisfuranoid mycotoxin substructure in TOPKAT (below) [17].
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(II) LAZAR- Lazy Structure-Activity Relationships 

 LAZAR (ARI system) is a novel tool in toxicoinformatics field 
and is available freely online. It is very useful for the prediction of 
toxic properties of chemical structures [19] and derives predictions 
for query structures from an inductive database which contains 
experimentally determined toxicity data. The predictive power of 
LAZAR mainly depends on the high quality data fed in its inductive 
database. Apart from the toxicity prediction, it provides the ration-
ales (structural features and similar molecules) for the prediction 
and a reliable confidence index that indicates, if a query structure 
falls within the applicability domain of the training set. The input 
window of LAZAR is shown in (Fig. 5).  

 LAZAR derives its prediction specifically for a query structure 
using a modified k-nearest- neighbour (k-nn) algorithm. For this 
purpose it searches a database with chemical structures i.e training 
set and its experimental data which are similar to the query struc-
ture (neighbours) and calculates a prediction from the experimental 
measurements of the query structure. At present, LAZAR uses the 
language of linear fragments for the identification of toxic substruc-
tures of the query molecule. Linear fragments are defined as chains 
of heavy (non-hydrogen) atoms with connecting bonds, without 
branches or cycles. All linear fragments that are present in the 
query structure or in one of the training structures are determined 
exhaustively by molecular feature miner (MOLFEA) algorithm. 
MOLFEA mines for fragments in chemicals and this step does not 
consider its biological activities. Although linear fragments seem to 
be limited at a first glance (no explicit consideration of branches or 
cycles), they perform remarkably well on a variety of toxicity end-
points. A possible reason is that a lot of chemical information is 
implicitly contained in these fragments and the “chemical context” 
is considered by the k-nn based prediction algorithm.  

 The goal of the feature selection step is the identification of 
fragments that are relevant for the toxic activity under investigation. 
Significance of the results is determined using chi-square test and 
fragments below a predefined threshold are discarded from further 
calculations. Training set with a similarity above a predefined 
threshold are considered as neighbors to the query structure. Results 
are reported in the format as in (Fig. 6). To classify a query struc-
ture one can seek confidence measure, conf, which indicates the 

expected class and the reliability of the prediction. Query structure 
is classified as active, if conf > 0 and as inactive, if conf < 0.  

(III) DEREK for Windows- Deductive Estimation of Risk from 

Existing Knowledge 

 Derek for Windows, a knowledge-based expert software system 
which is marketed by the not-for-profit organisation Lhasa Limited 
[21], was originally devised at Schering Agrochemicals. It makes 
qualitative predictions about the activity of a query molecule. Derek 
for Windows has several rule-bases, containing descriptions of 
molecular substructures (structural alerts), which have been associ-
ated with toxic endpoints on the basis of existing knowledge. 

 The rules are generic in nature, i.e., they are based on sets of 
related chemicals rather than on specific chemicals. The rules cover 
a broad range of toxicological endpoints and the main strengths of 
Derek for Windows include prediction of mutagenicity and car-
cinogenicity. Reasoning rules are based on: If (Grounds) is 
(Threshold) then (Proposition) is (Force). Grounds may be any 
particular property. When the value of the property crosses a 
threshold then the proposition which represents the toxicological 
endpoint is force i.e. it becomes likely that the chemical is toxic. 
The reliability of these predictions is presented in the form of one 
of eight levels of likelihood. Reasoning models are mathematically 
based on the logic of argumentation. 

 The molecule query is input to the program by drawing or im-
porting its two-dimensional topographical structure. Derek for 
Windows then searches the rule–base, highlighting the alert sub-
structure located within the query structure, and a message indicat-
ing the nature of the toxicological hazard is then provided. Struc-
tural alerts are often supported by relevant literature references. 
Derek for Windows uses the MDL ISIS/Draw package as its mo-
lecular editor. It allows batch processing; using the MDL standard 
SDfile format. It also provides a graphical editor for users to add 
new rules. 

 The main strengths of the Derek for Windows software: (i) 
Development of the peer reviewed rules, (ii) The graphical interface 
is highly user-friendly, highlighting the toxicophore and displaying 
the relevant literature references, (iii) Graphical rule editor provides 
an easy way to add new rules but at the same time illicit modifica-

Fig. (5). Input window of LAZAR.
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tion of the system is prevented by the use of license key, (iv) There 
is a batch processing feature, (v) There is considerable flexibility 
for adding data to the database, (vi) The user can access the infor-
mation used to formulate the rule base, i.e., the database, refer-
ences, and other supporting information (including relevant state-
ments).  

 Its limitations are: (i) The lack of default display of C and H 
atoms, may be confusing to the non-chemist. [21,22,23], (ii) It does 
not provide elaborate information about the activating and detoxifi-
cation effects of metabolism,. However, a link to sister product 
Meteor provides information about the possible metabolites of the 
query compound thus assisting Derek for Windows in detecting 
their toxic potential. 

(IV) HazardExpert 

 HazardExpert is an ARI expert system [22]. The software has 
open architecture, in other words, the chemists, toxicologists, drug 
disposition experts or environmental managers can understand, 
expand, modify or optimize the data on which the toxicity estima-
tion relies. Chemical structures can either be selected from a data-
base or, if it is a new chemical, the user has to enter the structure 
into the database before a prediction can be made. The user is re-
quired to define the species, dose level, route and duration of expo-
sure.  

 The query structure is searched for known toxicophores that are 
derived from literature in the field of QSAR or from the US EPA 
and Interagency Testing Committee (ITC) monographs. The sub-
structures that exert both positive and negative modulator effects 
are stored in the ‘Toxic Fragments Knowledge Base’. Knowledge 
maintenance module helps to add new structure and new toxic 
fragments to database and knowledge base respectively. Estimates 
for a number of toxicity endpoints are made once a toxicophore has 
been identified. The rules describe toxic segments and their effects 
on various biological systems. They are devised by integration of 
toxicological knowledge, expert judgment, QSAR models, and 
fuzzy logic (which simulates the effects of different exposure con-
ditions). HazardExpert predicts the pKa and logP values of the 

molecule, and uses these for calculation of bioavailability. Ap-
proximately it contains 100 toxic rules and every rule is globally 
defined.  

 The resulting predictions are given in form of histogram with 
toxicity classifications. The toxicity is predicted on a 0-100-
percentage scale in each toxicity class. Since this number is not a 
very precise value, the final result is given in probability categories 
which are classified as: highly probable toxic, probable toxic, pos-
sible toxic, uncertain toxic, not toxic. HazardExpert incorporates 
some reasonable estimates of physicochemical properties in its 
predictions and also provide estimates for bioavailability and bioac-
cumulation. It provides semi-quantitative estimates for toxicity. 
Besides these advantages there are few limitations which includes 
the inability to provide quantitative of metabolites, for novel 
datasets further ‘validation’ studies are required to increase the 
confidence in the predictions. 

(V) MULTICASE- Multiple Computer Automated Structure 

Evaluation 

 The Computer Automated Structure Evaluation (CASE) tech-
nology refers to a range of different programs supplied by MULTI-
CASE Inc. (Cleveland, OH, USA), known as ToxAlert, CASE, 
Multi-CASE, and CASETOX. MULTICASE is a hybrid of 2D 
QSAR and artificial expert structure based program [29]. Chemical 
structures are entered using either of the KLNor SMILES line nota-
tions, or from three types of structure files, Clark Still, MDL MOL 
file and SYBYL MOL files. SMILES code is to be preceded by “S” 
i.e. example Sc1ccccc1 for benzene and should not be longer than 
180 characters. It allows the user to create or modify database. Size 
of database has nothing to do with number of chemicals to be 
tested. The best method to test a database is to test a set of chemi-
cals that are not contained in the database and whose experimental 
results are available. If the database is good, it will give a high per-
centage of true predictions for both active and inactive chemicals. 
The structure of each molecule is divided up into all possible frag-
ments, of two to ten heavy (non-hydrogen) atoms in length. Statisti-
cal methods are then used to classify the fragments as biophores or 
biophobes,:  

 The output from MULTICASE is in textual format displaying 
the physicochemical properties calculated for the query and the 
presence of active or inactive fragments in the query molecule [29-
31]. For example, to predict carcinogenicity in rodents, databases 
for carcinogenicity assay need to be accessed. The module MCASE 
or CASETOX searches the structure of the chemical in the database 
for the presence of one or more biophores. 

 If a biophore is present, then MCASE predicts the chemical is 
active, otherwise inactive. The statistical measure of the predictive 
value of biophore distribution in the database is taken into account. 
The system also alerts the user to the presence of fragments in the 
query molecule that were not present in the training set. The quality 
of testing large and structurally diverse library of chemicals must 
depend upon the diversity of chemicals present in its database. The 
result is represented in CASE units in the range of 10-99; with 
value 10-19 indicating inactivity, 20-29 indicating marginal activ-
ity, 30-99 indicating increasing activity.  

CASE units = constant + a (Fragment 1) +b (Fragment 2) + …... 

 The confidence level in the biophore is given as probability. 
Other features of MULTICASE include the ability to batch process 
structures. It also has links to the META program for metabolism 
prediction. 

 Main strengths of this software is (i) Predictive models can be 
generated even for those molecules for which knowledge of mecha-
nism of action is unknown, (ii) The predictions are modulated by a 
number of physicochemical properties, (iii) Batch processing of 

Fig. (6). Output result format of LAZAR.
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molecules is very fast once the input files have been generated. Its 
limitations are (i) The system often fails to distinguish between 
molecules containing several small chains within one complex 
fragment from other molecules containing the same fragments dis-
tributed separately, (ii) The quality of the predictions made by the 
system is closely linked to the quality of the data used in the train-
ing set, (iii) Output from the software is often ambiguous and can 
lead to misinterpretation of the predictions, (iv) Training set has to 
be purchased separately.

 (VI) Other ADME/T Prediction Tools 

 Softwares for predicting ADME/Tox related properties cover a 
wide range and among them QikProp [32,33] and VolSurf [34,35] 
is well known for high- throughput screening from medium to large 
compound databases. These tools are indispensable in lead discov-
ery and development. 

 QikProp has the capability for predicting ADME/Tox properties 
such as - octanol/water and water/gas log Ps, log S, log BB, overall 
CNS activity, Caco-2 and MDCK cell permeabilities, human oral 
absorption, log Khsa for human serum albumin binding, and log IC50

for HERG K+-channel blockage. It also has the ability to check the 
Lipinski Rule-of-Five and Jorgensen Rule-of-Three violations for a 
compound to be drug-like [32,33]. All these property prediction of 
a NCE decide its suitability for lead generation and its optimization. 

 VolSurf [34-36] predicts ADME properties using pre-calculated 
models, computes unique ADME descriptors which quantitatively 
characterize size, shape, polarity and hydrophobicity. It performs 

statistical analyses to generate predictive models of bioactivity or 
property of compounds including DNA fragments, peptides and 
proteins. The main advantage of VolSurf is the rapid predictions for 
use with virtual screening tools. Structure-property models obtained 
using Volsurf -ADME descriptors are significantly more predictive
and also supplement QSAR with CoMFA’s built-in 2D and 3D 
descriptors. These models do not require molecular alignment,
translation of GRID or CoMFA fields into chemically intuitive 
descriptors and also the models are insensitive to conformational 
sampling. VolSurf was successfully validated in different systems, 
such as, membrane partitioning of oligopeptides, blood-brain bar-
rier permeation, the anti-HIV activity of quinolones and oral avail-
ability. 

Brief Overview and Application of Toxicoinformatics Softwares 

 General outlay of various well known toxicoinformatics soft-
wares described above are summarised in Table 2. A comparative 
analysis of these softwares, with its functioning capacity, would 
provide an idea of selecting the best available expert system, for 
different toxicology/medicinal chemistry projects (Table 3).

 These analysis would also help toxicologist and medicinal 
chemist to identify the relevant module of the expert systems, for 
the prediction of specific toxicity endpoints of the model, for their 
general or more specific case studies. Review of literature survey 
shown good amount of predictive toxicity models generated by 
using these softwares. An integrated testing strategies involving in 
silico, with in vivo and in vitro model analysis, in most of the above 
mentioned end points, is the latest trend, for early ADME/Tox 

Table 2. Some of the Freely and Commercially available Toxicoinformatics software’s for Toxicity Prediction 

Software/ Supplier/Status Toxicity Endpoints Predicted/ Associated Toxicity Databases URL 

LAZAR/

In silico toxicology/ (FREE) 

Rodent carcinogenicity, {Hamster| Mouse|Rat} carcinogenicity, Salmonella mutagenicity, 

Fathead Minnow Toxicity (LC50), FDA human liver toxicity/ CPDB and DSSTox US EPA 
www.predictive-toxicology.org/lazar/ 

TOPKAT/ 

Accelrys Ltd./ 

(COMMERCIAL) 

Carcinogenicity, Mutagenicity, Developmental toxicity, Rat LD50, Rat chronic LOAEL, Skin 

sensitization, Skin irritancy, Aerobic biodegradability, Ocular Irritation, Fathead Minnow LC50,

Daphnia magna EC50, VlogP/ US FDA, US NCI/NTP, US EPA, CDER, RTECS,GPMT, MITI,
Draize and AQUIRE 

www.accelrys.com/products/topka 

DEREK for Windows/  

LHASA Ltd./ 
(COMMERCIAL 

but not for profit) 

Mutagenicity, Carcinogenicity, Skin sensitization, Irritancy, Lachrymation, Neurotoxicity, 

Thyroid toxicity, Teratogenicity, Respiratory sensitization, Acute toxicity and many other 
effects (over 40 endpoints in version 9) / Knowledge based system 

www.lhasalimited.org 

MCASE, CASE, CASETOX/ 

MultiCASE Inc./ 
(COMMERCIAL) 

Carcinogenicity, Teratogenicity, Mutagenicity, Irritation, Maximum tolerated dose, Short-term 

genotoxicity, Biodegradation, Various mammalian acute and chronic toxicities and many other 
effects/ Knowledge based, US FDA 

www.multicase.com 

ToxScope/ 
Lead Scope Inc./ 

(COMMERCIAL) 

Carcinogenicity, genetic toxicity, irritation, Hepatotoxicity: reproductive, subchronic liver and 
many other mammalian toxicological endpoints/FDA CDER Chronic/subchronic, Genetox and

CFSAN Genetox 

www.leadscope.com 

Hazard Expert/  

Compu Drug/ 
(COMMERCIAL) 

Carcinogenicity, Teratogenicity, Oncogenicity, Mutagenicity, Membrane irritation, Neurotoxic-

ity, immunotoxicity, bioavailability, bioaccumulation/ US EPA 

www.compudrug.com 

Tox Boxes/ 

Pharma Algorithms Inc./ 

(COMMERCIAL) 

Acute toxicity, Genotixicity, Organ-specific health effects/ Ames database, Data from chronic, 

subchronic, acute and carcinogenicity 

studies from various species and routes of administration. LD50 data from six different animal 
systems:mouse and rat – intraperitoneal, intravenous, subcutaneous, oral administration/ Ames 

Test and Solubility Database.

www.ap-algorithms. com/ 

OncoLogic/

(FREE) 

Cancer Expert System or OncoLogic ®

Carcinogenicity/ 
US EPA, IARC, NCI/NTP, CPDB etc. 

http://www.epa.gov/opptintr/newchems/pubs/

sustainablefutures.htm 

NCI: National cancer institute, CPDB: Carcinogenic potency database, DSSTox: Distributed structure-searchable toxicity database, NTP: National toxicology program, EPA: Envi-

ronmental protection agency, CDER: Centre for drug evaluation and research, RTECS: Registry of toxic effects of chemical substances, GPMT: Guinea pig maximization test, MITI: 
Ministry of international trade and industry, IRC: International agency for research on cancer. 
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screening in drug discovery, reviewing of it is beyond the scope this 
article. Various human and environmental health end points involv-
ing in silico (ARI and KBS) models are briefly reviewed alongwith 
the associated softwares. 

 (i) The prediction of eye and skin irritation have been reviewed 
by Patlewicz et al. (2003) [37]. Due to the lack of quality in vivo
data, the QSAR predictive power is limited in this area. Both TOP-
KAT and MultiCASE contain models to discriminate between irri-
tants and non-irritants. Also DEREK and HazardExpert is coded 
with a number of rules, mainly relating to strong acidic and basic 
molecular features which may be relevant for eye and skin irritation 
study [37]. (ii) The QSARs of acute toxicity end point have been 
reviewed by Lessigiarska et al. (2005) [38]. There are limited num-
ber of models in this area involving regulatory data. Some neural 
network studies have undergone in more complex non-linear model 
data. TOPKAT and MultiCASE contain acute toxicity models and 
DEREK also lists few rules for its prediction [38]. (iii) QSARs of 
chronic toxicity end point prediction are very limited. TOPKAT 
and MultiCASE has its models and DEREK have some rules re-
lated to organ toxicity [39, 40]. (iv) Variety of models exist in 
mutagenicity end point prediction which are more specific such as 
QSARs for amines and aldehydes [41, 42]. MultiCASE have nu-
merous models for mutagenicity prediction and TOPKAT have 
Ames mutagenicity model. HazardExpert have comprehensive set 
of rules for mutagenicity prediction. (v) Like mutagenicity, car-
cinogenicity end points predictions are also more specific and many 
QSAR models exist in this area. The advantage of model specific 
chemical class is its simplicity and good predictive power in under-
standing the mechanism of action [43]. Modelling work have been 
carried out using multivariate data, from a heterogeneous database 
of compounds, and it is difficult to use due to lack of transparency 
in carcinogenicity data [44]. TOPKAT and MultiCASE contain 
FDA approved models for carcinogenicity predictions. OncoLogic 
which contains comprehensive collection of carcinogens, also has 
powerful models taken from US EPA [23]. QSARs of other model-
ing endpoints include development/ reproductive toxicity, acute and 
chronic environmental toxicity and bioaccumulation [14].  

 In silico toxicity prediction also include other related physico-
chemical and pharmacokinetics parameters such as solubility, frac-

tion of drug absorbed, metabolism, affinity for efflux transporters, 
bioavailability, binding to plasma proteins, tissue:blood partition 
coefficients, blood-brain barrier (BBB) partition coefficient, vol-
ume of distribution, clearance and half life.  

 Simplest models were established using rule based screening of 
compounds by different research groups such as, Lipinski et al. 
[45], Egan et al. [46], Norinder and Haeberlein [47] and Veber et
al. [48]. In 1997, Lipinski et al. published a guiding “rule of 5” 
simple method for drug screening, after analyzing absorption prop-
erties of 2287 compounds. They concluded that a drug show poor 
absorption if: (i) molecular weight exceeded 500, (ii) the sum of 
OH and NH hydrogen bond donors exceeded 5, (iii) the logKow

exceeded 5 and (iv) the sum of N and O atoms acting as hydrogen 
bond acceptors exceeded 10. Other classic work for chemists in-
clude graphical representation whether the solubility of a compound 
is acceptable or unacceptable in terms of absorption of a medically 
effective oral dose of the drug [49]. The study of the prediction of 
the drug absorption using multivariate statistics by Egan et al. 
shown that compounds show poor absorption if polar surface area 
(PSA) is < 148.1 Å2 and log Kow above 5.88 [46]. Similarly simplis-
tic models with few rules were proposed by Norinder and Haeber-
lein for the prediction of the blood brain barrier (BBB) partitioning 
i.e. the compound is likely to enter the brain if [N + O]  5 and log 
BBB portioning is positive, if log Kow –(N + O) is positive. This 
have direct impact of the importance of the brain as a site of action 
of drugs and as a site of potentially serious toxic side-effects of 
drugs, which is designed to act elsewhere [47]. The study by Veber 
et al. shown the effect of molecular properties on oral bioavailabil-
ity of drugs using simple classification system, where compounds 
with 10 rotatable bonds and a PSA of  140 Å2 (or  12 hydrogen 
bond donors or acceptors) show good bioavailability [48]. All the 
above mentioned models will further improve by refinement, with 
more data became available. 

 Nowdays, QSAR and molecular modeling techniques are well 
established and great advancement were made in the prediction of 
the pharmacokinetic and toxic effects of compounds. High through-
put screening and data mining approach in diverse fields are re-
quired and a coordinated approach needed for the production of the 
useful model. Failed drug candidates are also useful in order to 

Table 3.  Comparative Analysis of Different Toxicoinformatics Software’s 

ARI Based Expert Systems KBS Based Expert Systems 

TOPKAT    MULTICASE/LEADSCOPE    DEREK 

QSAR based and collects molecular fragments and descriptors Inspects molecules for known structural liabilities 

Calculate chemical descriptor values Identifies structural liabilities 

Comparison of similar molecule from the database Prepares summary report of findings 

Using multivariate statistical analysis to predict the probability of being a member of 
toxicity class 

Validated structural relationships with known toxic mechanisms 

Structural liabilities identified Provides references & predicted mechanisms 

Non-validated structural relationships  

Provide relative dose and liability prediction Chemically intuitive results 

Easy to determine if molecule is well represented in training set via similarity search Good initial filter for known liabilities: Lacks specificity 

Can be biased to minimize false positives and/or false negatives Only predicts presence of identified fragments 

Challenging to systematically improve model: No linearity Cannot discriminate within a structural sub-class 

Difficult to Train General Model: Excellent predictiveness for single event; Problem-

atic for multiple events 
Retrospective in nature 

Toxicity endpoint prediction is usually based on mechanism of action Cannot extrapolate prediction to NCEs 

Good For Specific Models Good For General Models 
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identify unfavourable characteristics in it. The physiological 
mechanism responsible for uptake, distribution, storage and elimi-
nation of the compound from the body are of main concern, and 
more robust models need to be developed for predicting the toxi-
cokinetic fate of these chemicals. 

Quality and Assessment of In Silico Toxicity Prediction Model 

 In silico model prediction, using different expert systems in 
toxicoinformatics, need assessment in terms of its sensitivity and 
specificity, which is also interrelated. An optimization of a model 
towards higher sensitivity values results in a reduced specificity. 
The sensitivity of the model is the ratio of correctly predicted toxic 
molecules to the total number of toxic molecules. Specificity refers 
to the ratio of correctly predicted non-toxic molecules to the total 
number of non-toxic molecules. Furthermore, an integrated parame-
ter concordance (or accuracy) in assessing overall performance of 
these models also need attention which is the ratio of correctly pre-
dicted molecules to the total number of tested molecules. An overall 
model performance (Q)SARs for evaluation of the commercially 
available software for human health and environmental endpoints 
was performed by European Centre for Ecotoxicology and Toxicol-
ogy of Chemicals (ECETOC) and others [50, 51]. It is crucial to 
exercise the real predictive capability of different expert systems 
using molecules whose experimental results are not available. Two 
NTP comparative exercise on the prediction of rodent carcinogenic-
ity have been analysed (e.g. sensitivity and specificity) by various 
research groups [43]. This exercise is found to be very important 
for judging the real capability of predicting the carcinogenicity of 
untested chemicals. A maximum accuracy of 65-70% attained for 
noncongeneric chemicals in most of the expert systems, which is 
encouraging. Classical QSAR methods are also satisfying for indi-
vidual classes of carcinogens and mutagens with 80-90% accurate 
[52]. It should also be noted that the applicability domain of a 
QSAR system is to estimate the similarity of the predicted com-
pound to the compounds used in the training set, which is however, 
always descriptor dependent for that specific case. Ideally, the de-
scriptors used for estimation of the applicability domain for the 
model development should be mechanistically related to the pre-
dicted endpoint [53].

CONCLUSIONS 

 Computational toxicology is now widely used for lead chemical 
development, and are capable of providing valuable information in 
drug discovery process. These in silico toxicology experiments can 
play a major role in decreasing time to market, reducing animal 
experiments, assessing late stage attrition, and strategic planning of 
pharmaceutical and chemical development processes. Good predic-
tive models for toxicity parameters depend crucially on selecting 
the right mathematical approach, the right molecular descriptors for 
the particular toxicity endpoint, and a sufficiently large set of ex-
perimental data relating to this endpoint for the validation of the 
model. In the next 10 years or so, the degree of automation of in 
silico modelling and data interpretation will continue to increase 
with the integration of medium- to high-throughput in vitro and in 
vivo assays to reduce the risk of late-stage attrition, and second, to 
optimize the screening and testing by looking at only the most 
promising molecules. 
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